Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34445356

RESUMEN

Ferritins comprise a conservative family of proteins found in all species and play an essential role in resistance to redox stress, immune response, and cell differentiation. Sponges (Porifera) are the oldest Metazoa that show unique plasticity and regenerative potential. Here, we characterize the ferritins of two cold-water sponges using proteomics, spectral microscopy, and bioinformatic analysis. The recently duplicated conservative HdF1a/b and atypical HdF2 genes were found in the Halisarca dujardini genome. Multiple related transcripts of HpF1 were identified in the Halichondria panicea transcriptome. Expression of HdF1a/b was much higher than that of HdF2 in all annual seasons and regulated differently during the sponge dissociation/reaggregation. The presence of the MRE and HRE motifs in the HdF1 and HdF2 promotor regions and the IRE motif in mRNAs of HdF1 and HpF indicates that sponge ferritins expression depends on the cellular iron and oxygen levels. The gel electrophoresis combined with specific staining and mass spectrometry confirmed the presence of ferric ions and ferritins in multi-subunit complexes. The 3D modeling predicts the iron-binding capacity of HdF1 and HpF1 at the ferroxidase center and the absence of iron-binding in atypical HdF2. Interestingly, atypical ferritins lacking iron-binding capacity were found in genomes of many invertebrate species. Their function deserves further research.


Asunto(s)
Ferritinas/genética , Poríferos/genética , Animales , Secuencia Conservada , Ferritinas/química , Ferritinas/metabolismo , Hierro/metabolismo , Redes y Vías Metabólicas/genética , Modelos Moleculares , Filogenia , Poríferos/clasificación , Poríferos/metabolismo , Dominios Proteicos/genética , Análisis de Secuencia de ADN , Transcriptoma/fisiología
2.
Cancers (Basel) ; 13(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807574

RESUMEN

A special problem in the surgery of rectal cancer is connected with a need for appropriate removal of intestine parts, along with the tumor, including the fragment close to the sphincter. To determine the length of fragments to remove, it is necessary to reveal areas without changes in molecule functioning, specific for tumor. The purpose of the present study was to investigate functioning the proteasomes, the main actors in protein hydrolysis, in patient rectal adenocarcinoma and different intestine locations. Chymotrypsin-like and caspase-like activities, open to complex influence of different factors, were analyzed in 43-54 samples by Suc-LLVY-AMC- and Z-LLE-AMC-hydrolysis correspondingly. Both activities may be arranged by the decrease in the location row: cancer→adjacent tissue→proximal (8-20 cm from tumor) and distal (2 and 4 cm from tumor) sides. These activities did not differ noticeably in proximal and distal locations. Similar patterns were detected for the activities and expression of immune subunits LMP2 and LMP7 and expression of 19S and PA28αß activators. The largest changes in tumor were related to proteasome subtype containing LMP2 and PA28αß that was demonstrated by native electrophoresis. Thus, the results indicate a significance of subtype LMP2-PA28αß for tumor and absence of changes in proteasome pool in distal fragments of 2-4 cm from tumor.

3.
Biochim Biophys Acta Proteins Proteom ; 1867(9): 840-853, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31228587

RESUMEN

Multiple complexes of 20S proteasomes with accessory factors play an essential role in proteolysis in eukaryotic cells. In this report, several forms of 20S proteasomes from extracts of Spodoptera frugiperda (Sf9) cells were separated using electrophoresis in a native polyacrylamide gel and examined for proteolytic activity in the gel and by Western blotting. Distinct proteasome bands isolated from the gel were subjected to liquid chromatography-tandem mass spectrometry and identified as free core particles (CP) and complexes of CP with one or two dimers of assembly chaperones PAC1-PAC2 and activators PA28γ or PA200. In contrast to the activators PA28γ and PA200 that regulate the access of protein substrates to the internal proteolytic chamber of CP in an ATP-independent manner, the 19S regulatory particle (RP) in 26S proteasomes performs stepwise substrate unfolding and opens the chamber gate in an ATP-dependent manner. Electron microscopic analysis suggested that spontaneous dissociation of RP in isolated 26S proteasomes leaves CPs with different gate sizes related presumably to different stages in the gate opening. The primary structure of 20S proteasome subunits in Sf9 cells was determined by a search of databases and by sequencing. The protein sequences were confirmed by mass spectrometry and verified by 2D gel electrophoresis. The relative rates of sequence divergence in the evolution of 20S proteasome subunits, the assembly chaperones and activators were determined by using bioinformatics. The data confirmed the conservation of regular CP subunits and PA28γ, a more accelerated evolution of PAC2 and PA200, and especially high divergence rates of PAC1.


Asunto(s)
Proteínas de Insectos/química , Chaperonas Moleculares/química , Complejo de la Endopetidasa Proteasomal/química , Spodoptera/enzimología , Animales , Cromatografía Liquida , Proteínas de Insectos/aislamiento & purificación , Espectrometría de Masas , Chaperonas Moleculares/aislamiento & purificación , Complejo de la Endopetidasa Proteasomal/aislamiento & purificación
4.
Cancers (Basel) ; 10(10)2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30257462

RESUMEN

Tumor growth is associated with elevated proteasome expression and activity. This makes proteasomes a promising target for antitumor drugs. Current antitumor drugs such as bortezomib that inhibit proteasome activity have significant side effects. The purpose of the present study was to develop effective low-toxic antitumor compositions with combined effects on proteasomes. For compositions, we used bortezomib in amounts four and ten times lower than its clinical dose, and chose menadione sodium bisulfite (MSB) as the second component. MSB is known to promote oxidation of NADH, generate superoxide radicals, and as a result damage proteasome function in cells that ensure the relevance of MSB use for the composition development. The proteasome pool was investigated by the original native gel electrophoresis method, proteasome chymotrypsin-like activity-by Suc-LLVY-AMC-hydrolysis. For the compositions, we detected 10 and 20 µM MSB doses showing stronger proteasome-suppressing and cytotoxic in cellulo effects on malignant cells than on normal ones. MSB indirectly suppressed 26S-proteasome activity in cellulo, but not in vitro. At the same time, MSB together with bortezomib displayed synergetic action on the activity of all proteasome forms in vitro as well as synergetic antitumor effects in cellulo. These findings determine the properties of the developed compositions in vivo: antitumor efficiency, higher (against hepatocellular carcinoma and mammary adenocarcinoma) or comparable to bortezomib (against Lewis lung carcinoma), and drastically reduced toxicity (LD50) relative to bortezomib. Thus, the developed compositions represent a novel generation of bortezomib-based anticancer drugs combining high efficiency, low general toxicity, and a potentially expanded range of target tumors.

5.
Virus Res ; 253: 68-76, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29890203

RESUMEN

The protein VCP/p97 (also named CDC48 and TER94) belongs to a type II subfamily of the AAA+ATPases and controls cellular proteostasis by acting upstream of proteasomes in the ubiquitin-proteasome protein degradation pathway. The function of VCP/p97 in the baculovirus infection cycle in insect cells remains unknown. Here, we identified VCP/p97 in the fall armyworm Spodoptera frugiperda (Sf9) cells and analyzed the replication of the Autographa californica multiple nucleopolyhedrovirus, AcMNPV, in Sf9 cells in which the VCP/p97 function was inhibited. The specific allosteric inhibitor of the VCP/p97 ATPase activity, NMS-873, did not deplete VCP/p97 in infected cells but caused a dose-dependent inhibition of viral DNA synthesis and efficiently suppressed expression of viral proteins and production of budded virions. NMS-873 caused accumulation of ubiquitinated proteins in a manner similar to the inhibitor of proteasome activity, Bortezomib. This suggests the essential function of VCP/p97 in the baculovirus infection cycle might be associated, at least in part, with the ubiquitin-proteasome system.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Insectos/metabolismo , Nucleopoliedrovirus/fisiología , Spodoptera/enzimología , Adenosina Trifosfatasas/genética , Animales , Interacciones Huésped-Patógeno , Proteínas de Insectos/genética , Nucleopoliedrovirus/genética , Células Sf9 , Spodoptera/genética , Spodoptera/virología , Replicación Viral
6.
Oncotarget ; 8(41): 70941-70957, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-29050334

RESUMEN

The aim of this work was to detect changes in proteasome pools of brain parts of August rats with monoamine metabolism violations in comparison with that of control Wistar rats. To reveal active proteasome structures, a method of native electrophoresis for the analysis of crude tissue fractions was developed. By means of this method and following Western blotting, the most pronounced changes in reorganization of proteasome structures were detected in proteasome pool of the brain cortex of August rats. Main findings are the enhanced expression of immune proteasome subtypes containing proteolytic subunit LMP2 and activator PA28αß as well as immune proteasome subtypes containing proteolytic subunit LMP7 and activator PA700 and simultaneously decreased expression of subtypes with subunit LMP2 and activator PA700 in the brain cortex of August rats compared to that of Wistar rats. These results were indirectly confirmed by SDS PAGE method followed by Western blotting, which showed the increased quantities of immune subunits and proteasome activators in the brain cortex of August rats compared to that of Wistar rats. Immune proteasomes were revealed by immunohistochemistry in neurons, but not in glial cells of August and Wistar rat cortex. The detected reorganization of proteasome pools is likely to be important for production of special peptides to provide the steady interaction between neurons and adaptation of central nervous system to conditions caused by monoamine metabolism deviations.

7.
J Alzheimers Dis ; 54(2): 763-76, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27567864

RESUMEN

Accumulation of amyloid-ß (Aß) in neurons accompanies Alzheimer's disease progression. In the cytoplasm Aß influences activity of proteasomes, the multisubunit protein complexes that hydrolyze the majority of intracellular proteins. However, the manner in which Aß affects the proteolytic activity of proteasomes has not been established. In this study the effect of Aß42 and Aß42 with isomerized Asp7 on activity of different forms of proteasomes has been analyzed. It has been shown that Aß peptides efficiently reduce activity of the 20S proteasomes, but increase activity of the 20S proteasomes capped with the 19S and/or 11S regulators. Modulation of proteasome activity is mainly determined by the C-terminal segment of Aß (amino acids 17-42). This study demonstrated an important role of proteasome regulators in the interplay between Aß and the proteasomes.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Fragmentos de Péptidos/farmacología , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Humanos , Complejo de la Endopetidasa Proteasomal/química
8.
Biochim Biophys Acta ; 1864(6): 738-746, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26945516

RESUMEN

Baculoviruses are large DNA viruses that infect insect species such as Lepidoptera and are used in biotechnology for protein production and in agriculture as insecticides against crop pests. Baculoviruses require activity of host proteasomes for efficient reproduction, but how they control the cellular proteome and interact with the ubiquitin proteasome system (UPS) of infected cells remains unknown. In this report, we analyzed possible changes in the subunit composition of 26S proteasomes of the fall armyworm, Spodoptera frugiperda (Sf9), cells in the course of infection with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). 26S proteasomes were purified from Sf9 cells by an immune affinity method and subjected to 2D gel electrophoresis followed by MALDI-TOF mass spectrometry and Mascot search in bioinformatics databases. A total of 34 homologues of 26S proteasome subunits of eukaryotic species were identified including 14 subunits of the 20S core particle (7 α and 7 ß subunits) and 20 subunits of the 19S regulatory particle (RP). The RP contained homologues of 11 of RPN-type and 6 of RPT-type subunits, 2 deubiquitinating enzymes (UCH-14/UBP6 and UCH-L5/UCH37), and thioredoxin. Similar 2D-gel maps of 26S proteasomes purified from uninfected and AcMNPV-infected cells at 48hpi confirmed the structural integrity of the 26S proteasome in insect cells during baculovirus infection. However, subtle changes in minor forms of some proteasome subunits were detected. A portion of the α5(zeta) cellular pool that presumably was not associated with the proteasome underwent partial proteolysis at a late stage in infection.


Asunto(s)
Nucleopoliedrovirus/patogenicidad , Complejo de la Endopetidasa Proteasomal/química , Proteómica , Spodoptera/citología , Secuencia de Aminoácidos , Animales , Línea Celular , Electroforesis en Gel Bidimensional , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
9.
Virology ; 436(1): 49-58, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23123012

RESUMEN

Baculovirus AcMNPV causes proteotoxicity in Sf9 cells as revealed by accumulation of ubiquitinated proteins and aggresomes in the course of infection. Inhibition of proteasomes by lactacystin increased markedly the stock of ubiquitinated proteins indicating a primary role of proteasomes in detoxication. The proteasomes were present in Sf9 cells as 26S and 20S complexes whose protease activity did not change during infection. Proteasome inhibition caused a delay in the initiation of viral DNA replication suggesting an important role of proteasomes at early stages in infection. However, lactacystin did not affect ongoing replication indicating that active proteasomes are not required for genome amplification. At late stages in infection (24-48 hpi), aggresomes containing the ubiquitinated proteins and HSP/HSC70s showed gradual fusion with the vacuole-like structures identified as lysosomes by antibody to cathepsin D. This result suggests that lysosomes may assist in protection against proteotoxicity caused by baculoviruses absorbing the ubiquitinated proteins.


Asunto(s)
Lisosomas/metabolismo , Nucleopoliedrovirus , Complejo de la Endopetidasa Proteasomal/metabolismo , Células Sf9/virología , Proteínas Ubiquitinadas/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacología , Adenina/análogos & derivados , Adenina/farmacología , Animales , Línea Celular , Inhibidores de Cisteína Proteinasa/farmacología , Replicación del ADN/efectos de los fármacos , ADN Viral/genética , Proteínas del Choque Térmico HSC70/metabolismo , Mariposas Nocturnas/virología , Inhibidores de Proteasoma/farmacología , Spodoptera/citología , Spodoptera/virología , Ubiquitinación , Replicación Viral
10.
Cell Immunol ; 256(1-2): 47-55, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19230868

RESUMEN

The expression pattern and distribution of proteasome immune subunits LMP7 and LMP2 in the developing rat spleen and liver as well as the periarterial lymphoid sheath formation were investigated. LMP7 and LMP2 were detected by immunoblotting in the spleen on the 21st embryonic day and during the first postnatal days in equal amounts. Their levels increased by the 8th and 18th postnatal days. Double immunofluorescent labeling the spleen cells revealed LMP7 and LMP2 in T and B lymphocytes localized in the red pulp in embryogenesis. Few T lymphocytes were discovered in periarterial zones on the 8th postnatal day. T lymphocytes filled these zones and formed lymphoid sheaths by the 18-19th day. In the liver, LMP7 and LMP2 were revealed by the 17-19th postnatal day. Immunofluorescent analysis showed their presence in hepatocytes at this period. The data suggest that T cell-mediated immune response in relation to hepatocytes is possible beginning from 18th to 19th postnatal day.


Asunto(s)
Cisteína Endopeptidasas/inmunología , Cisteína Endopeptidasas/metabolismo , Tejido Linfoide/embriología , Tejido Linfoide/inmunología , Complejos Multienzimáticos/inmunología , Complejos Multienzimáticos/metabolismo , Linfocitos T/enzimología , Linfocitos T/inmunología , Animales , Desarrollo Embrionario/inmunología , Femenino , Inmunidad Celular , Hígado/embriología , Hígado/enzimología , Hígado/crecimiento & desarrollo , Hígado/inmunología , Tejido Linfoide/enzimología , Tejido Linfoide/crecimiento & desarrollo , Embarazo , Complejo de la Endopetidasa Proteasomal , Ratas , Ratas Wistar , Bazo/embriología , Bazo/enzimología , Bazo/crecimiento & desarrollo , Bazo/inmunología , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...